5 Methods: Symmetry and simple-cases

Without calculating (a + b)3, you know that the coefficient of a?b in the answer must be equal to the
coefficient of ab?. You could swap a and b in the question without making a difference, so you must

be able to swap a and b in the answer without making a difference.
If the coefficient of a3b? in (a + b)® is 10, what is the coefficient of a®b3?

Seeing a symmetry in the question which means that there must be a similar symmetry in the answer

often helps.
At the very least, you can avoid duplication of working by seeing symmetry in the question.

If you want to know what all the coefficients of all the terms in (a + b)® add up to, you don’t have to
work out all the terms. Considering one special simple case will give you the answer. The coefficients
must still be valid if @ = 1, b = 1, when all the powers of a and b are also 1. So what do the coefficients

add up to?

Another way you can use simple cases in many problems is first to consider a simplified version of

the problem, and then to build the full solution from that.

5.1 MAT problems which can be done just from symmetry or special-cases

Some solutions to these in appendix to this booklet.

D. Which of the following sketches is a graph of 2% — * = 2y + 17
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B. The graph of the function y = log ,(2? — 22 + 2) is sketched in
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J. If two chords QP and RFP on a circle of radius 1 meet in an angle § at P, for example
as drawn in the diagram below,
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then the largest possible area of the shaded region RPQ) is
fl . T
(a) @1+ cos 5) ) (b) €+ sin#; () 3 (1 —cosf); (d) #.
D. The reflection of the point (1,0} in the line y = ma has coordinates
m?+1 i
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5. MAT 2014 f - The functions S and T are defined for real numbers by:

SX)=x+l,and T(x) =—x
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The function S is applied s times and the function T is applied t times, in some order, to pro-
duce the function F(x) =8—-x

It is possible to deduce that: (a) s=8 and t=1. (b) sis odd and t is even. (c) s is even and t is

odd. (d) s and t are powers of 2. (e) none of the above.

B. The sum of the first 2n terms of
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H. The function F(n) is defined for all positive integers as follows: F(1) = 0 and for all
n=2
F(n)=F(n—-1)+2 if 2 divides n but 3 does not divide n;
Fin)=Fin—-1)+3 it 3 divides n but 2 does not divide n;
7. MAT 2014 h Finy=Fln—-1)+4 if 2 and 3 both divide n;
F{n)=F(n-1) if neither 2 nor 3 divides n.
The value of F{6000) equals
(a) 9827,  (b) 10121, (¢} 11000, (d) 12300, (e) 12352.
J. For all real numbers x, the function f(x) satisfies
. 1
6+ f(x) = 2f(—x) + 32* (/ ,,r'[x}m) .
-1
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It follows that f_]i flx)dr equals

(a) 4, (b) 6, (¢) 11, (d)

(i)
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. MAT 2013 h - The area bounded by the graphs y = /(2 - x2) and x + (vV2—1)y = v2 equals: (a)

sinv2, 1. . 2
T) (b) %_ E) (C) %y (d) 4 _6-

MAT 2013 i - The function F(k) is defined for positive integers by F(1) = 1,F(2) =1,F(3) = -1
and by the identities F(2k) = F(k), F(2k+1) = F(k), for k = 2. Thesum F(1) + F2) + F(3) +...+
F(100) equals (a) —15; (b) 28; (c) 64; (d) 81
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5.2 1/1999/1

How many integers greater than or equal to zero and less than a million are not divisible by
2 or 37 What is the average value of these integers?

1/1999/1
How many integers greater than or egual to zero and less than 4179 are not divisible by 3
or 77 What is the average value of these integers?
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