II/1996/3 - The Fibonacci numbers F_{n} are defined by the conditions $F_{0}=0, F_{1}=1$ and

$$
F_{n+1}=F_{n}+F_{n-1}
$$

for all $n \geqslant 1$. Show that $F_{2}=1, F_{3}=2, F_{4}=3$ and compute F_{5}, F_{6} and F_{7}.
Compute $F_{n+1} F_{n-1}-F_{n}^{2}$ for a few values of n; guess a general formula and prove it by induction, or otherwise.

By induction on k, or otherwise, show that

$$
F_{n+k}=F_{k} F_{n+1}+F_{k-1} F_{n}
$$

for all positive integers n and k.
$F_{2}=F_{1}+F_{0}=1 ; F_{3}=F_{2}+F_{1}=2 ; F_{4}=F_{3}+F_{2}=3 ; F_{5}=F_{4}+F_{3}=5 ; F_{6}=F_{5}+F_{4}=8 ; F_{7}=F_{6}+F_{5}=13$
$F_{2} \cdot F_{0}-\left(F_{1}\right)^{2}=0-1=-1$
$F_{3} \cdot F_{1}-\left(F_{2}\right)^{2}=2-1=1$
$F_{4} \cdot F_{2}-\left(F_{3}\right)^{2}=3-4=-1$
Guess: $F_{n+1} F_{n-1}-F_{n}^{2}=(-1)^{n}$

Proof: $F_{n+1} F_{n-1}-F_{n}^{2}=$ rectangle made up of green plus yellow area minus square made up of pink plus yellow areas $=$ green area minus pink area $=-\left(F_{n} F_{n-2}-F_{n-1}^{2}\right)$. Since $F_{2} \cdot F_{0}-F_{1}^{2}=0-1=-1$, the conclusion follows.

To prove $F_{n+k}=F_{k} F_{n+1}+F_{k-1} F_{n}$ by induction
Basis step: prove true for $k=1$ and $k=2$
$F_{1} F_{n+1}+F_{0} F_{n}=1 \cdot F_{n+1}+0 \cdot F_{n}=F_{n+1}$
$F_{2} F_{n+1}+F_{1} F_{n}=F_{n+1}+F_{n}=F_{n+2}$
Induction step: prove true for $k=r+1$ if true for $k=r$ and $k=r-1$
$F_{n+r+1}=F_{n+r}+F_{n+r-1}$ by definition
$\ldots=F_{r} F_{n+1}+F_{r-1} F_{n}+F_{r-1} F_{n+1}+F_{r-2} F_{n}$ if claim true for $k=r$ and $k=r-1$
$\ldots=F_{r+1} F_{n+1}+F_{r} F_{n}$

