October 2016 FP2 test paper. 60 minutes, 55 marks

1. Solve the equation

$$
z^{3}=4 \sqrt{ } 2-4 \sqrt{ } 2 \mathrm{i}
$$

giving your answers in the form $r(\cos \theta+\mathrm{i} \sin \theta)$, where $-\pi<\theta \leq \pi$.
(Q.2 June 2009)
(6)
Q. 2 June 200)
2. A transformation T from the z-plane to the w-plane is given by

$$
w=\frac{z}{z+\mathrm{i}}, \quad z \neq-\mathrm{i} .
$$

The circle with equation $|z|=3$ is mapped by T onto the curve C.
(a) Show that C is a circle and find its centre and radius. Do this both by the geometric method and by the algebraic method.

(8 for geometric)
 (8 for algebraic)

The region $|z|<3$ in the z-plane is mapped by T onto the region R in the w-plane.
(b) Shade the region R on an Argand diagram.
(Q.6 June 2009, adapted)4-5
3. Find the set of values of x for which

$$
\begin{equation*}
\frac{3}{x+3}>\frac{x-4}{x} . \tag{7}
\end{equation*}
$$

(Q. 1 June 2011, adapted)
please turn over for Q.4-5
4. Given that

$$
(2 r+1)^{3}=A r^{3}+B r^{2}+C r+1,
$$

(a) find the values of the constants A, B and C.
(b) Show that

$$
(2 r+1)^{3}-(2 r-1)^{3}=24 r^{2}+2 .
$$

(2)
(c) Using the result in part (b) and the method of differences, show that

$$
\sum_{r=1}^{n} r^{2}=\frac{1}{6} n(n+1)(2 n+1)
$$

(5)
(Q. 4 June 2011, adapted)
5. (a) Use de Moivre's theorem to show that

$$
\begin{equation*}
\sin 5 \theta=16 \sin ^{5} \theta-20 \sin ^{3} \theta+5 \sin \theta . \tag{5}
\end{equation*}
$$

Hence, given also that $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$,
(b) find all the solutions of

$$
\sin 5 \theta=5 \sin 3 \theta
$$

in the interval $0 \leq \theta<2 \pi$. Give your answers to 3 decimal places.
(Q. 6 June 2011, adapted)
(6)

Total 55 marks

