C3 resit paper, 9-10 February 2016

1.

Figure 1

Figure 1 shows part of the curve with equation $y=-x^{3}+2 x^{2}+2$, which intersects the x-axis at the point A where $x=\alpha$.

To find an approximation to α, the iterative formula

$$
x_{n+1}=\frac{2}{\left(x_{n}\right)^{2}}+2
$$

is used.
(a) Taking $x_{0}=2.5$, find the values of x_{1}, x_{2}, x_{3} and x_{4}.

Give your answers to 3 decimal places where appropriate.
(b) Show that $\alpha=2.359$ correct to 3 decimal places.
2.

$$
\mathrm{f}(x)=x^{3}+3 x^{2}+4 x-12
$$

(a) Show that the equation $\mathrm{f}(x)=0$ can be written as

$$
\begin{equation*}
x=\sqrt{\left(\frac{4(3-x)}{(3+x)}\right)}, \quad x \neq-3 . \tag{3}
\end{equation*}
$$

The equation $x^{3}+3 x^{2}+4 x-12=0$ has a single root which is between 1 and 2.
(b) Use the iteration formula

$$
x_{n+1}=\sqrt{\left(\frac{4\left(3-x_{n}\right)}{\left(3+x_{n}\right)}\right)}, \quad n \geq 0
$$

with $x_{0}=1$ to find, to 2 decimal places, the value of x_{1}, x_{2} and x_{3}.

The root of $\mathrm{f}(x)=0$ is α.
(c) By choosing a suitable interval, prove that $\alpha=1.272$ to 3 decimal places.

June 2012
3.

$$
\mathrm{f}(x)=2 \sin \left(x^{2}\right)+x-2, \quad 0 \leq x<2 \pi .
$$

(a) Show that $\mathrm{f}(x)=0$ has a root α between $x=0.75$ and $x=0.85$.

The equation $\mathrm{f}(x)=0$ can be written as $x=[\arcsin (1-0.5 x)]^{\frac{1}{2}}$.
(b) Use the iterative formula

$$
x_{n+1}=\left[\arcsin \left(1-0.5 x_{n}\right)\right]^{\frac{1}{2}}, \quad x_{0}=0.8,
$$

to find the values of x_{1}, x_{2} and x_{3}, giving your answers to 5 decimal places.
(c) Show that $\alpha=0.80157$ is correct to 5 decimal places.
4.

$$
\mathrm{f}(x)=\ln (x+2)-x+1, \quad x>-2, x \in \mathbb{R} .
$$

(a) Show that there is a root of $\mathrm{f}(x)=0$ in the interval $2<x<3$.
(b) Use the iterative formula

$$
x_{n+1}=\ln \left(x_{n}+2\right)+1, \quad x_{0}=2.5,
$$

to calculate the values of x_{1}, x_{2} and x_{3}, giving your answers to 5 decimal places.
(c) Show that $x=2.505$ is a root of $\mathrm{f}(x)=0$ correct to 3 decimal places.
5. The function f is defined by

$$
\mathrm{f}: x \mapsto \frac{2(x-1)}{x^{2}-2 x-3}-\frac{1}{x-3}, x>3
$$

(a) Show that $\mathrm{f}(x)=\frac{1}{x+1}, x>3$.
(b) Find the range of f .
(c) Find $\mathrm{f}^{-1}(x)$. State the domain of this inverse function.

The function g is defined by

$$
\mathrm{g}: x \mapsto 2 x^{2}-3, \quad x \in \mathbb{R}
$$

(d) Solve $\operatorname{fg}(x)=\frac{1}{8}$.
6. The functions f and g are defined by

$$
\begin{aligned}
& \mathrm{f}: x \mapsto \ln (2 x-1), \quad x \in \mathbb{R}, \quad x>\frac{1}{2}, \\
& \mathrm{~g}: x \mapsto \frac{2}{x-3}, \quad x \in \mathbb{R}, \quad x \neq 3 .
\end{aligned}
$$

(a) Find the exact value of $\mathrm{fg}(4)$.
(b) Find the inverse function $\mathrm{f}^{-1}(x)$, stating its domain.
(c) Sketch the graph of $y=|\mathrm{g}(x)|$. Indicate clearly the equation of the vertical asymptote and the coordinates of the point at which the graph crosses the y-axis.
(d) Find the exact values of x for which $\left|\frac{2}{x-3}\right|=3$.
7.

Figure 2
Figure 2 shows a sketch of the curve with the equation $y=\mathrm{f}(x), x \in \mathbb{R}$.
The curve has a turning point at $A(3,-4)$ and also passes through the point $(0,5)$.
(a) Write down the coordinates of the point to which A is transformed on the curve with equation
(i) $y=|\mathbf{f}(x)|$,
(ii) $y=2 f\left(\frac{1}{2} x\right)$.
(b) Sketch the curve with equation $y=\mathrm{f}(|x|)$.

On your sketch show the coordinates of all turning points and the coordinates of the point at which the curve cuts the y-axis.

The curve with equation $y=\mathrm{f}(x)$ is a translation of the curve with equation $y=x^{2}$.
(c) Find $\mathrm{f}(x)$.
(d) Explain why the function f does not have an inverse.
8. (a) Differentiate with respect to x,
(i) $x^{\frac{1}{2}} \ln (3 x)$,
(ii) $\frac{1-10 x}{(2 x-1)^{5}}$, giving your answer in its simplest form.
(b) Given that $x=3 \tan 2 y$ find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x.

June 2012

TOTAL FOR PAPER: 75 MARKS
END (This is Edexcel's "Silver Two" paper)

