"Do-and-don't" for S2 statistics

S2 binomial, Poisson, normal, uniform

DO: # Know discrete is |||||| and continuous is

Know binomial is discrete and like number of heads when tossing coins

Know Poisson is discrete and like number of goals when playing football

Know normal is continuous and like errors in a manufacturing process

Know the continuous uniform distribution is continuous and like wait

continuous and like waiting time for a train which goes exactly every 20 minutes

- # Know binomial → normal as n becomes large (for any p, but especially middling p)
- # Know Poisson → normal as λ becomes large
- # When using normal approx to binomial and Poisson, do continuity correction: P(binom or Poisson variable is some whole number values) ≅ P(normal variable is any number which rounds to those whole number values)
- # Learn by heart the conditions for when to use distributions http://www.memrise.com/course/336931/a-level-maths-edexcel-s2/

DON'T # Fail to make continuity correction

DO # Think: P(binom or Poisson variable is some whole number values) \cong P(normal variable is any number which *rounds to* those whole number values)

DON'T # Look up or calculate P(X=n) when you want $P(X \le n)$, or vice versa DO # Always write out the P you're looking up or calculating, $P(X \le n)$; or P(X=n); or $P(X \le n)$, which is $1-P(X \le n)$; etc.

DON'T # Write e.g. $X \sim B(100,0.05)$ without saying what X is

DO # When you use approximations, be clear, e.g.: $X \sim B(100,0.05) \approx Po(5)$ or $X \sim B(100,0.2) \approx N(50,40)$ or $X \sim Po(50) \approx N(50,50)$

DO: # State $H_0 = null\ hypothesis =$ default belief in absence of new evidence, e.g. coin is unbiased, medicine makes no difference

DO: # State $H_1 = alternative hypothesis = suggestion to be checked, e.g. coin is biased, medicine helps cure you$

DO: # State H₁ as *one-tailed*, e.g. test whether coin biased to heads alone, or *two-tailed*, e.g. coin biased either way

DO: # State significance level = your standard of how improbable a result has to be on the assumption of H_0 for you to reject H_0 and go for H_1

DO: # State critical region = range of results (one-tailed or two-tailed) which is so far out from what's expected with H_0 that probability < significance level

DO: # State actual significance level = probability of result being in critical region (i.e. less than pre-set significance level)

DO: # Draw a picture of the range of possible results and the critical region, double-checking on one tail or two

DO # Learn definitions about sampling by heart: http://www.memrise.com/course/336931/a-level-maths-edexcel-s2/. DON'T # Mix up H_0 and H_1 .

DO # Remember H₀ is what you would go for with 0 (zero) new evidence

DON'T # Get continuity corrections wrong if you're using Normal approximation

DO # Think: P(binom or Poisson variable is some whole number values) = P(normal variable is any number which *rounds to* those whole number values)

DON'T # Think or write that a result *proves* H_0 (or H_1). Think, and write: "The evidence is not enough to reject H_0 " or "The evidence is enough to reject H_0 ". And write what it means: "The evidence is enough to suggest the coin is biased", or "the evidence is not enough to suggest the coin is biased".

DO: # calculate E(X) = $\sum x_i p(x_i)$ or = $\int x f(x) dx$

DO: # calculate $E(X^2) = \sum x_i^2 p(x_i)$ or $= \int x^2 f(x) dx$

DO: # calculate $var(x)=(E(X))^2-(E(X))^2$

DO: # Remember probability density function f(x) does not measure a probability. For a continuous random variable, p(any given value)=0. Any function f(x) can be a pdf if $f(x) \ge 0$ for all x and $\int_{-\infty}^{\infty} f(x) dx = 1$

DO: # Calculate cumulative distribution function

 $F(x) = \int_{-\infty}^{x} f(t)dt$ is a probability. F must be continuous, always increasing, and $\rightarrow 1$ as $x \rightarrow \infty$

DO # Calculate median by F(m)=0.5

DO # Calculate skew as the opposite of what you'd think: if the graph is tilted to the right, that's negative skew

DON'T # Fail to show values of F for the whole range (usually F is 0 for a whole range of low x, and 1 for a whole range of high x)

DON'T # Fail to "fit together" the values of F at the points where different functions defining it join.

DO # When you introduce each random variable X, say what it is, e.g. X=number of heads from 20 tosses of coin.

DO # Use capitals for random variables.